Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Front Immunol ; 12: 778829, 2021.
Article in English | MEDLINE | ID: covidwho-1555677

ABSTRACT

Since the coronavirus disease outbreak in 2019, several antibody therapeutics have been developed to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Antibody therapeutics are effective in neutralizing the virus and reducing hospitalization in patients with mild and moderate infections. These therapeutics target the spike protein of SARS-CoV-2; however, emerging mutations in this protein reduce their efficiency. In this study, we developed a universal SARS-CoV-2 neutralizing antibody. We generated a humanized monoclonal antibody, MG1141A, against the receptor-binding domain of the spike protein through traditional mouse immunization. We confirmed that MG1141A could effectively neutralize live viruses, with an EC50 of 92 pM, and that it exhibited effective Fc-mediated functions. Additionally, it retained its neutralizing activity against the alpha (UK), beta (South Africa), and gamma (Brazil) variants of SARS-CoV-2. Taken together, our study contributes to the development of a novel antibody therapeutic approach, which can effectively combat emerging SARS-CoV-2 mutations.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Antibody Affinity , Complementarity Determining Regions/chemistry , Epitopes , Humans , Immunization , Mice , Molecular Docking Simulation , Protein Interaction Domains and Motifs , Receptors, IgG/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
2.
Front Immunol ; 12: 767981, 2021.
Article in English | MEDLINE | ID: covidwho-1528824

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to constitute a serious public health threat worldwide. Protective antibody-mediated viral neutralization in response to SARS-CoV-2 infection has been firmly characterized. Where the effects of the antibody response are generally considered to be beneficial, an important biological question regarding potential negative outcomes of a SARS-CoV-2 antibody response has yet to be answered. We determined the distribution of IgG subclasses and complement activation levels in plasma from convalescent individuals using in-house developed ELISAs. The IgG response towards SARS-CoV-2 receptor-binding domain (RBD) after natural infection appeared to be mainly driven by IgG1 and IgG3 subclasses, which are the main ligands for C1q mediated classical complement pathway activation. The deposition of the complement components C4b, C3bc, and TCC as a consequence of SARS-CoV-2 specific antibodies were depending primarily on the SARS-CoV-2 RBD and significantly correlated with both IgG levels and disease severity, indicating that individuals with high levels of IgG and/or severe disease, might have a more prominent complement activation during viral infection. Finally, freshly isolated monocytes and a monocyte cell line (THP-1) were used to address the cellular mediated inflammatory response as a consequence of Fc-gamma receptor engagement by SARS-CoV-2 specific antibodies. Monocytic Fc gamma receptor charging resulted in a significant rise in the secretion of the pro-inflammatory cytokine TNF-α. Our results indicate that SARS-CoV-2 antibodies might drive significant inflammatory responses through the classical complement pathway and via cellular immune-complex activation that could have negative consequences during COVID-19 disease. We found that increased classical complement activation was highly associated to COVID-19 disease severity. The combination of antibody-mediated complement activation and subsequent cellular priming could constitute a significant risk of exacerbating COVID-19 severity.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Complement System Proteins/immunology , Immunoglobulin G/blood , SARS-CoV-2/immunology , COVID-19/blood , Complement Activation , Cytokines/immunology , Humans , Inflammation/immunology , Receptors, IgG/immunology , THP-1 Cells
3.
Nature ; 599(7885): 465-470, 2021 11.
Article in English | MEDLINE | ID: covidwho-1428880

ABSTRACT

Monoclonal antibodies with neutralizing activity against SARS-CoV-2 have demonstrated clinical benefits in cases of mild-to-moderate SARS-CoV-2 infection, substantially reducing the risk for hospitalization and severe disease1-4. Treatment generally requires the administration of high doses of these monoclonal antibodies and has limited efficacy in preventing disease complications or mortality among hospitalized patients with COVID-195. Here we report the development and evaluation of anti-SARS-CoV-2 monoclonal antibodies with optimized Fc domains that show superior potency for prevention or treatment of COVID-19. Using several animal disease models of COVID-196,7, we demonstrate that selective engagement of activating Fcγ receptors results in improved efficacy in both preventing and treating disease-induced weight loss and mortality, significantly reducing the dose required to confer full protection against SARS-CoV-2 challenge and for treatment of pre-infected animals. Our results highlight the importance of Fcγ receptor pathways in driving antibody-mediated antiviral immunity and exclude the possibility of pathogenic or disease-enhancing effects of Fcγ receptor engagement of anti-SARS-CoV-2 antibodies upon infection. These findings have important implications for the development of Fc-engineered monoclonal antibodies with optimal Fc-effector function and improved clinical efficacy against COVID-19 disease.


Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19 Drug Treatment , COVID-19/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Cricetinae , Disease Models, Animal , Female , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Male , Mice , Pre-Exposure Prophylaxis , Receptors, IgG/chemistry , Receptors, IgG/immunology , Treatment Outcome
4.
Cell Rep ; 37(1): 109798, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1415262

ABSTRACT

Despite the worldwide effect of the coronavirus disease 2019 (COVID-19) pandemic, the underlying mechanisms of fatal viral pneumonia remain elusive. Here, we show that critical COVID-19 is associated with enhanced eosinophil-mediated inflammation when compared to non-critical cases. In addition, we confirm increased T helper (Th)2-biased adaptive immune responses, accompanying overt complement activation, in the critical group. Moreover, enhanced antibody responses and complement activation are associated with disease pathogenesis as evidenced by formation of immune complexes and membrane attack complexes in airways and vasculature of lung biopsies from six fatal cases, as well as by enhanced hallmark gene set signatures of Fcγ receptor (FcγR) signaling and complement activation in myeloid cells of respiratory specimens from critical COVID-19 patients. These results suggest that SARS-CoV-2 infection may drive specific innate immune responses, including eosinophil-mediated inflammation, and subsequent pulmonary pathogenesis via enhanced Th2-biased immune responses, which might be crucial drivers of critical disease in COVID-19 patients.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Complement System Proteins/immunology , Eosinophils/immunology , Inflammation/immunology , Pneumonia, Viral/immunology , SARS-CoV-2/immunology , Adaptive Immunity , Adult , Aged , Aged, 80 and over , Antigen-Antibody Complex/metabolism , COVID-19/metabolism , COVID-19/virology , Complement Activation , Complement Membrane Attack Complex/metabolism , Eosinophils/virology , Female , Humans , Inflammation/metabolism , Inflammation/virology , Lung Injury/immunology , Lung Injury/pathology , Lung Injury/virology , Male , Middle Aged , Pneumonia, Viral/metabolism , Receptors, IgG/immunology , Receptors, IgG/metabolism , Severity of Illness Index , Signal Transduction , Th2 Cells/immunology , Viral Load , Young Adult
5.
Mol Syst Biol ; 17(9): e10243, 2021 09.
Article in English | MEDLINE | ID: covidwho-1395372

ABSTRACT

Systems serology provides a broad view of humoral immunity by profiling both the antigen-binding and Fc properties of antibodies. These studies contain structured biophysical profiling across disease-relevant antigen targets, alongside additional measurements made for single antigens or in an antigen-generic manner. Identifying patterns in these measurements helps guide vaccine and therapeutic antibody development, improve our understanding of diseases, and discover conserved regulatory mechanisms. Here, we report that coupled matrix-tensor factorization (CMTF) can reduce these data into consistent patterns by recognizing the intrinsic structure of these data. We use measurements from two previous studies of HIV- and SARS-CoV-2-infected subjects as examples. CMTF outperforms standard methods like principal components analysis in the extent of data reduction while maintaining equivalent prediction of immune functional responses and disease status. Under CMTF, model interpretation improves through effective data reduction, separation of the Fc and antigen-binding effects, and recognition of consistent patterns across individual measurements. Data reduction also helps make prediction models more replicable. Therefore, we propose that CMTF is an effective general strategy for data exploration in systems serology.


Subject(s)
AIDS Serodiagnosis , COVID-19 Serological Testing , COVID-19/immunology , Data Interpretation, Statistical , HIV Infections/immunology , AIDS Serodiagnosis/methods , AIDS Serodiagnosis/statistics & numerical data , Antibodies, Viral/blood , Antibodies, Viral/metabolism , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/statistics & numerical data , Humans , Immunity, Humoral , Killer Cells, Natural/immunology , Logistic Models , Receptors, Fc/immunology , Receptors, IgG/immunology
6.
Cell ; 184(3): 628-642.e10, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-1385216

ABSTRACT

SARS-CoV-2 infection causes more severe disease in pregnant women compared to age-matched non-pregnant women. Whether maternal infection causes changes in the transfer of immunity to infants remains unclear. Maternal infections have previously been associated with compromised placental antibody transfer, but the mechanism underlying this compromised transfer is not established. Here, we used systems serology to characterize the Fc profile of influenza-, pertussis-, and SARS-CoV-2-specific antibodies transferred across the placenta. Influenza- and pertussis-specific antibodies were actively transferred. However, SARS-CoV-2-specific antibody transfer was significantly reduced compared to influenza- and pertussis-specific antibodies, and cord titers and functional activity were lower than in maternal plasma. This effect was only observed in third-trimester infection. SARS-CoV-2-specific transfer was linked to altered SARS-CoV-2-antibody glycosylation profiles and was partially rescued by infection-induced increases in IgG and increased FCGR3A placental expression. These results point to unexpected compensatory mechanisms to boost immunity in neonates, providing insights for maternal vaccine design.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Maternal-Fetal Exchange/immunology , Placenta/immunology , Pregnancy Complications, Infectious/immunology , SARS-CoV-2/immunology , Adult , Female , Humans , Infant, Newborn , Pregnancy , Pregnancy Trimester, Third/immunology , Receptors, IgG/immunology , THP-1 Cells
7.
Nature ; 591(7848): 124-130, 2021 03.
Article in English | MEDLINE | ID: covidwho-1368933

ABSTRACT

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/physiopathology , Interferons/antagonists & inhibitors , Interferons/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Antibodies, Viral/blood , Antibody Formation , Base Sequence , COVID-19/blood , COVID-19/virology , Female , Humans , Immunoglobulin G/immunology , Interferons/metabolism , Male , Neutrophils/immunology , Neutrophils/pathology , Protein Domains , Receptor, Interferon alpha-beta/antagonists & inhibitors , Receptor, Interferon alpha-beta/immunology , Receptor, Interferon alpha-beta/metabolism , Receptors, IgG/immunology , Single-Cell Analysis , Viral Load/immunology
8.
J Infect Dis ; 224(4): 575-585, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1358459

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) is associated with an overactive inflammatory response mediated by macrophages. Here, we analyzed the phenotype and function of neutrophils in patients with COVID-19. We found that neutrophils from patients with severe COVID-19 express high levels of CD11b and CD66b, spontaneously produce CXCL8 and CCL2, and show a strong association with platelets. Production of CXCL8 correlated with plasma concentrations of lactate dehydrogenase and D-dimer. Whole blood assays revealed that neutrophils from patients with severe COVID-19 show a clear association with immunoglobulin G (IgG) immune complexes. Moreover, we found that sera from patients with severe disease contain high levels of immune complexes and activate neutrophils through a mechanism partially dependent on FcγRII (CD32). Interestingly, when integrated in immune complexes, anti-severe acute respiratory syndrome coronavirus 2 IgG antibodies from patients with severe COVID-19 displayed a higher proinflammatory profile compared with antibodies from patients with mild disease. Our study suggests that IgG immune complexes might promote the acquisition of an inflammatory signature by neutrophils, worsening the course of COVID-19.


Subject(s)
Antibodies, Viral/immunology , Antigen-Antibody Complex/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Neutrophil Activation/immunology , Adult , Aged , Antibodies, Viral/blood , Antigen-Antibody Complex/blood , Antigens, CD/immunology , CD11b Antigen/immunology , Cell Adhesion Molecules/immunology , Female , GPI-Linked Proteins/immunology , Humans , Immunoglobulin G/blood , Interleukin-8/immunology , Male , Middle Aged , Neutrophils/immunology , Receptors, IgG/immunology , SARS-CoV-2/immunology , Young Adult
9.
Nature ; 596(7873): 565-569, 2021 08.
Article in English | MEDLINE | ID: covidwho-1356565

ABSTRACT

Vaccine-induced immune thrombotic thrombocytopaenia (VITT) is a rare adverse effect of COVID-19 adenoviral vector vaccines1-3. VITT resembles heparin-induced thrombocytopaenia (HIT) in that it is associated with platelet-activating antibodies against platelet factor 4 (PF4)4; however, patients with VITT develop thrombocytopaenia and thrombosis without exposure to heparin. Here we sought to determine the binding site on PF4 of antibodies from patients with VITT. Using alanine-scanning mutagenesis5, we found that the binding of anti-PF4 antibodies from patients with VITT (n = 5) was restricted to eight surface amino acids on PF4, all of which were located within the heparin-binding site, and that the binding was inhibited by heparin. By contrast, antibodies from patients with HIT (n = 10) bound to amino acids that corresponded to two different sites on PF4. Biolayer interferometry experiments also revealed that VITT anti-PF4 antibodies had a stronger binding response to PF4 and PF4-heparin complexes than did HIT anti-PF4 antibodies, albeit with similar dissociation rates. Our data indicate that VITT antibodies can mimic the effect of heparin by binding to a similar site on PF4; this allows PF4 tetramers to cluster and form immune complexes, which in turn causes Fcγ receptor IIa (FcγRIIa; also known as CD32a)-dependent platelet activation. These results provide an explanation for VITT-antibody-induced platelet activation that could contribute to thrombosis.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Thrombocytopenia/chemically induced , Thrombocytopenia/immunology , Thrombosis/chemically induced , Thrombosis/immunology , Adult , Aged , Amino Acid Sequence , Antibodies/immunology , Binding Sites, Antibody , Female , Heparin/chemistry , Heparin/immunology , Heparin/metabolism , Humans , Kinetics , Male , Middle Aged , Models, Molecular , Platelet Activation , Platelet Factor 4/immunology , Receptors, IgG/immunology
10.
Viruses ; 13(6)2021 05 31.
Article in English | MEDLINE | ID: covidwho-1256669

ABSTRACT

Identification of therapeutics against emerging and re-emerging viruses remains a continued priority that is only reinforced by the recent SARS-CoV-2 pandemic. Advances in monoclonal antibody (mAb) isolation, characterization, and production make it a viable option for rapid treatment development. While mAbs are traditionally screened and selected based on potency of neutralization in vitro, it is clear that additional factors contribute to the in vivo efficacy of a mAb beyond viral neutralization. These factors include interactions with Fc receptors (FcRs) and complement that can enhance neutralization, clearance of infected cells, opsonization of virions, and modulation of the innate and adaptive immune response. In this review, we discuss recent studies, primarily using mouse models, that identified a role for Fc-FcγR interactions for optimal antibody-based protection against emerging and re-emerging virus infections.


Subject(s)
Communicable Diseases, Emerging/immunology , Immunoglobulin Fc Fragments/immunology , Receptors, IgG/immunology , Virus Diseases/immunology , Viruses/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibody-Dependent Cell Cytotoxicity , Communicable Diseases, Emerging/therapy , Communicable Diseases, Emerging/virology , Humans , Immunization, Passive , Phagocytosis , Virus Diseases/therapy , Virus Diseases/virology , Viruses/classification
11.
Blood ; 137(26): 3656-3659, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1215090

ABSTRACT

Vaccination is crucial in combatting the severe acute respiratory syndrome coronavirus 2 pandemic. The rare complication of thrombocytopenia and thrombotic complications at unusual sites after ChAdOx1 nCov-19 vaccination is caused by platelet-activating antibodies directed against platelet factor 4 (PF4). We present a widely applicable whole-blood standard flow cytometric assay to identify the pathogenic antibodies associated with vaccine-induced immune-mediated thrombotic thrombocytopenia (VITT) after ChAdOx1 nCov-19 vaccination. This assay will enable rapid diagnosis by many laboratories. This trial was registered at www.clinicaltrials.gov as #NCT04370119.


Subject(s)
Autoantibodies/blood , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Flow Cytometry/methods , Immunoglobulin G/blood , Platelet Activation/immunology , Platelet Factor 4/immunology , Purpura, Thrombocytopenic, Idiopathic/diagnosis , Receptors, IgG/immunology , SARS-CoV-2 , Vaccination/adverse effects , Antibody Specificity , Autoantibodies/biosynthesis , Autoantibodies/immunology , COVID-19 Vaccines/immunology , ChAdOx1 nCoV-19 , Heparin/adverse effects , Heparin/immunology , Humans , Immunoenzyme Techniques , Immunogenicity, Vaccine , Immunoglobulin G/biosynthesis , Immunoglobulin G/immunology , P-Selectin/analysis , Purpura, Thrombocytopenic, Idiopathic/etiology , Purpura, Thrombocytopenic, Idiopathic/immunology
12.
Nat Commun ; 12(1): 2037, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1164849

ABSTRACT

The hallmarks of COVID-19 are higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive immunological responses, induced by circulating human coronaviruses (hCoVs), is needed to understand such divergent clinical outcomes. Here we show analysis of coronavirus antibody responses of pre-pandemic healthy children (n = 89), adults (n = 98), elderly (n = 57), and COVID-19 patients (n = 50) by systems serology. Moderate levels of cross-reactive, but non-neutralizing, SARS-CoV-2 antibodies are detected in pre-pandemic healthy individuals. SARS-CoV-2 antigen-specific Fcγ receptor binding accurately distinguishes COVID-19 patients from healthy individuals, suggesting that SARS-CoV-2 infection induces qualitative changes to antibody Fc, enhancing Fcγ receptor engagement. Higher cross-reactive SARS-CoV-2 IgA and IgG are observed in healthy elderly, while healthy children display elevated SARS-CoV-2 IgM, suggesting that children have fewer hCoV exposures, resulting in less-experienced but more polyreactive humoral immunity. Age-dependent analysis of COVID-19 patients, confirms elevated class-switched antibodies in elderly, while children have stronger Fc responses which we demonstrate are functionally different. These insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.


Subject(s)
Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Formation/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , COVID-19 Vaccines/immunology , Child , Child, Preschool , Cross Reactions/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Middle Aged , Receptors, IgG/immunology , Spike Glycoprotein, Coronavirus/immunology , Young Adult
13.
Virology ; 559: 1-9, 2021 07.
Article in English | MEDLINE | ID: covidwho-1142294

ABSTRACT

Since the COVID-19 pandemic, functional non-neutralizing antibody responses to SARS-CoV-2, including antibody-dependent cell-mediated cytotoxicity (ADCC), are poorly understood. We developed an ADCC assay utilizing a stably transfected, dual-reporter target cell line with inducible expression of a SARS-CoV-2 spike protein on the cell surface. Using this assay, we analyzed 61 convalescent serum samples from adults with PCR-confirmed COVID-19 and 15 samples from healthy uninfected controls. We found that 56 of 61 convalescent serum samples induced ADCC killing of SARS-CoV-2 S target cells, whereas none of the 15 healthy controls had detectable ADCC. We then found a modest decline in ADCC titer over a median 3-month follow-up in 21 patients who had serial samples available for analysis. We confirmed that the antibody-dependent target cell lysis was mediated primarily via the NK FcγRIIIa receptor (CD16). This ADCC assay had high sensitivity and specificity for detecting serologic immune responses to SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/immunology , Cell Line , Cytotoxicity Tests, Immunologic , Female , Humans , Killer Cells, Natural/immunology , Kinetics , Male , Middle Aged , Receptors, IgG/immunology , Sensitivity and Specificity , Young Adult
14.
Hum Immunol ; 82(3): 170-176, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1065106

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is affecting the whole world and threatening human health. We aim to investigate the immunological characteristics of monocytes in critical patients with COVID-19. METHODS: The number and immune status of monocytes were detected by flow cytometry in 32 COVID-19 patients and 18 healthy individuals. RESULTS: In critical patients with COVID-19, the absolute number of total monocytes and CD16- monocytes was significantly decreased but CD16+ pro-inflammatory monocytes was increased compared to healthy controls. Antigen presentation potential of monocytes, as measured by HLA-DR expression, was suppressed, while their inflammatory phenotype (CD38 expression) was enhanced. Cytokine levels showed sustained increases in critical patients. And the levels of IL-6 were positively correlated with CD16+ monocytes number. IL-6 and IL-10 levels were negatively correlated with HLA-DR expression of monocytes. During the recovery of COVID-19 patients, the count and immune status of monocyte subsets were restored by degrees. HLA-DR+ monocytes possessed good sensitivity and specificity for predicting the incidence of critical patients with COVID-19. CONCLUSIONS: In critical patients with COVID-19, decline in number and HLA-DR expression of monocytes might lead to decreased antigen presentation potential and thus immunosuppression, while increased CD16+ pro-inflammatory monocytes might mediate hyperinflammation. HLA-DR+ monocytes might be a meaningful assisted indicator to predict the incidence of critical patients with COVID-19.


Subject(s)
COVID-19/immunology , Monocytes/immunology , ADP-ribosyl Cyclase 1/immunology , Aged , Antigen Presentation , COVID-19/blood , Case-Control Studies , Cytokines/immunology , Female , Flow Cytometry , HLA-DR Antigens/immunology , Humans , Inflammation/immunology , Male , Middle Aged , Phenotype , Receptors, IgG/immunology
15.
Sci Rep ; 11(1): 1462, 2021 01 14.
Article in English | MEDLINE | ID: covidwho-1065941

ABSTRACT

Cannabis sativa is widely used for medical purposes and has anti-inflammatory activity. This study intended to examine the anti-inflammatory activity of cannabis on immune response markers associated with coronavirus disease 2019 (COVID-19) inflammation. An extract fraction from C. sativa Arbel strain (FCBD) substantially reduced (dose dependently) interleukin (IL)-6 and -8 levels in an alveolar epithelial (A549) cell line. FCBD contained cannabidiol (CBD), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), and multiple terpenes. Treatments with FCBD and a FCBD formulation using phytocannabinoid standards (FCBD:std) reduced IL-6, IL-8, C-C Motif Chemokine Ligands (CCLs) 2 and 7, and angiotensin I converting enzyme 2 (ACE2) expression in the A549 cell line. Treatment with FCBD induced macrophage (differentiated KG1 cell line) polarization and phagocytosis in vitro, and increased CD36 and type II receptor for the Fc region of IgG (FcγRII) expression. FCBD treatment also substantially increased IL-6 and IL-8 expression in macrophages. FCBD:std, while maintaining anti-inflammatory activity in alveolar epithelial cells, led to reduced phagocytosis and pro-inflammatory IL secretion in macrophages in comparison to FCBD. The phytocannabinoid formulation may show superior activity versus the cannabis-derived fraction for reduction of lung inflammation, yet there is a need of caution proposing cannabis as treatment for COVID-19.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19/immunology , Cannabinoids/pharmacology , Cannabis/chemistry , Epithelial Cells/immunology , Macrophages/immunology , Plant Extracts/pharmacology , SARS-CoV-2/immunology , A549 Cells , Angiotensin-Converting Enzyme 2/immunology , Anti-Inflammatory Agents/chemistry , COVID-19/pathology , Cannabinoids/chemistry , Cytokines/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Macrophages/pathology , Macrophages/virology , Plant Extracts/chemistry , Receptors, IgG/immunology , COVID-19 Drug Treatment
16.
Nat Immunol ; 22(1): 67-73, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065904

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 infections can cause coronavirus disease 2019 (COVID-19), which manifests with a range of severities from mild illness to life-threatening pneumonia and multi-organ failure. Severe COVID-19 is characterized by an inflammatory signature, including high levels of inflammatory cytokines, alveolar inflammatory infiltrates and vascular microthrombi. Here we show that patients with severe COVID-19 produced a unique serologic signature, including an increased likelihood of IgG1 with afucosylated Fc glycans. This Fc modification on severe acute respiratory syndrome coronavirus 2 IgGs enhanced interactions with the activating Fcγ receptor FcγRIIIa; when incorporated into immune complexes, Fc afucosylation enhanced production of inflammatory cytokines by monocytes, including interleukin-6 and tumor necrosis factor. These results show that disease severity in COVID-19 correlates with the presence of proinflammatory IgG Fc structures, including afucosylated IgG1.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Immunoglobulin G/immunology , Receptors, IgG/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , COVID-19/metabolism , COVID-19/virology , Child , Cytokines/metabolism , Female , Glycosylation , Humans , Immunoglobulin G/metabolism , Interleukin-6 , Male , Middle Aged , Receptors, IgG/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Severity of Illness Index , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
17.
Nat Commun ; 11(1): 5752, 2020 11 13.
Article in English | MEDLINE | ID: covidwho-926678

ABSTRACT

Efficacious interventions are urgently needed for the treatment of COVID-19. Here, we report a monoclonal antibody (mAb), MW05, with SARS-CoV-2 neutralizing activity by disrupting the interaction of receptor binding domain (RBD) with angiotensin-converting enzyme 2 (ACE2) receptor. Crosslinking of Fc with FcγRIIB mediates antibody-dependent enhancement (ADE) activity by MW05. This activity is eliminated by introducing the LALA mutation to the Fc region (MW05/LALA). Potent prophylactic and therapeutic effects against SARS-CoV-2 are observed in rhesus monkeys. A single dose of MW05/LALA blocks infection of SARS-CoV-2 in prophylactic treatment and clears SARS-CoV-2 in three days in a therapeutic treatment setting. These results pave the way for the development of MW05/LALA as an antiviral strategy for COVID-19.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antiviral Agents/pharmacology , Betacoronavirus/immunology , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/immunology , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/prevention & control , Female , HEK293 Cells , Humans , Macaca mulatta , Male , Pandemics/prevention & control , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/prevention & control , Receptors, IgG/genetics , Receptors, IgG/immunology , Receptors, Virus/metabolism , SARS-CoV-2 , Vero Cells , Virus Attachment
18.
Cell ; 183(6): 1508-1519.e12, 2020 12 10.
Article in English | MEDLINE | ID: covidwho-898562

ABSTRACT

The urgent need for an effective SARS-CoV-2 vaccine has forced development to progress in the absence of well-defined correlates of immunity. While neutralization has been linked to protection against other pathogens, whether neutralization alone will be sufficient to drive protection against SARS-CoV-2 in the broader population remains unclear. Therefore, to fully define protective humoral immunity, we dissected the early evolution of the humoral response in 193 hospitalized individuals ranging from moderate to severe. Although robust IgM and IgA responses evolved in both survivors and non-survivors with severe disease, non-survivors showed attenuated IgG responses, accompanied by compromised Fcɣ receptor binding and Fc effector activity, pointing to deficient humoral development rather than disease-enhancing humoral immunity. In contrast, individuals with moderate disease exhibited delayed responses that ultimately matured. These data highlight distinct humoral trajectories associated with resolution of SARS-CoV-2 infection and the need for early functional humoral immunity.


Subject(s)
COVID-19 , Immunity, Humoral , Immunoglobulin A/immunology , Immunoglobulin M/immunology , Receptors, IgG/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/mortality , Female , HL-60 Cells , Humans , Male
19.
Sci Rep ; 10(1): 16615, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-834915

ABSTRACT

Middle East Respiratory Syndrome coronavirus (MERS-CoV) is a highly virulent pathogen that causes Middle East Respiratory Syndrome (MERS). Anti-MERS-CoV antibodies play an integral role in the prevention and treatment against MERS-CoV infections. Bioactivity is a key quality attribute of therapeutic antibodies, and high accuracy and precision are required. The major methods for evaluating the antiviral effect of antiviral antibodies include neutralization assays using live viruses or pseudoviruses are highly variable. Recent studies have demonstrated that the antibody-dependent cellular cytotoxicity (ADCC) activity of antiviral antibodies is more consistent with the virus clearance effect in vivo than neutralization activity. However, no reports evaluating the ADCC activity of anti-MERS antibodies have been published to date. Here, we describe the development of a robust and reliable cell-based reporter gene assay for the determination of ADCC activity of anti-MERS antibodies using 293T/MERS cells stably expressing the spike protein of MERS-CoV (MERS-S) as target cells and the engineered Jurkat/NFAT-luc/FcγRIIIa stably expressing FcγRIIIA and NFAT reporter gene as effector cells. According to the ICH-Q2 analytical method guidelines, we carefully optimized the experimental conditions and assessed the performance of our assay. In addition, we found that the ADCC activity of afucosylated anti-MERS antibodies is higher than their fucosylated counterparts. The establishment of this ADCC determination system provides a novel method for evaluating the bioactivity of anti-MERS antibodies and improving ADCC activity through modification of N-glycosylation of the Fc segment.


Subject(s)
Antibodies, Viral/analysis , Antibody-Dependent Cell Cytotoxicity/immunology , Coronavirus Infections/immunology , Cytotoxicity Tests, Immunologic/methods , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus Infections/virology , Genes, Reporter , HEK293 Cells , Humans , Jurkat Cells , Luciferases/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , NFATC Transcription Factors/genetics , Receptors, IgG/genetics , Receptors, IgG/immunology , Response Elements , Spike Glycoprotein, Coronavirus/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL